Triangle Sum Theorem - Formula, Proof, Statement, Examples | Angle Sum Theorem (2025)

The triangle sum theorem states that the sum of all the interior angles of a triangle is 180 degrees. In a Euclidean space, the sum of the measure of the interior angles of a triangle sum up to 180 degrees, be it an acute, obtuse, or a right triangle which is the direct result of the triangle sum theorem, also known as the angle sum theorem of the triangle. A triangle is the smallest polygon having three sides and three interior angles, one at each vertex, bounded by a pair of adjacent sides.

In geometry, the triangle sum theorem has varied applications as it gives important results while solving problems involving triangles and other polygons. In this article, we will discuss the angle sum theorem and the exterior angle theorem of a triangle with its statement, proof, and examples.

1.What Is the Triangle Sum Theorem?
2.Triangle Sum Theorem Formula
3.Triangle Sum Theorem Proof
4.Exterior Angle Sum Theorem
5.Polygon Angle Sum Theorem
6.FAQs on Angle Sum Theorem

What Is the Triangle Sum Theorem?

A triangle is a two-dimensional closed figure formed by three line segments and consists of the interior as well as exterior angles. As per the triangle sum theorem, the sum of all the angles (interior) of a triangle is 180 degrees, and the measure of the exterior angle of a triangle equals the sum of its two opposite interior angles.

Consider a triangle ABC as shown below:

Triangle Sum Theorem - Formula, Proof, Statement, Examples | Angle Sum Theorem (1)

From the above-given figure, we can notice that all three angles of the triangle when rearranged, constitute one straight angle. So, ∠A + ∠B + ∠C = 180°. Thus, in the given triangle ABC, ∠A + ∠B + ∠C = 180°. Let's consider an example to understand this theorem. Consider a triangle PQR such that, ∠P = 38° and ∠Q = 134°. Calculate ∠R. As per the triangle angle sum theorem, ∠P + ∠Q + ∠R = 180°

⇒ 38° + 134° + ∠R = 180°

⇒ 172° + ∠R = 180°

⇒ ∠R = 180° – 172°

Therefore, ∠R = 8°

Angle Sum Theorem Statement

Statement: The angle sum theorem states that the sum of all the interior angles of a triangle is 180 degrees.

Triangle Sum Theorem Formula

The sum of the interior angles in a triangle is supplementary. In other words, the sum of the measure of the interior angles of a triangle equals 180°. So, the formula of the triangle sum theorem can be written as, for a triangle ABC, we have ∠A + ∠B + ∠C = 180°.

Triangle Sum Theorem Proof

Consider a triangle ABC. We have to show that the sum of the angles a, b, and c is 180°.

Triangle Sum Theorem - Formula, Proof, Statement, Examples | Angle Sum Theorem (2)

Proof:

  • Draw a line DE passing through the vertex A, which is parallel to the side BC.
  • Two angles will be formed, mark them as p and q.
  • Since AB is a transversal for the parallel lines DE and BC, we have p = b (alternate interior angles)
  • Similarly, q = c.
  • Now, p, a, and q must sum to 180° (angles on a straight line). Thus, p + a + q = 180°
  • Since p = b and q = c. Thus, a + b + c = 180°

Therefore, the sum of the three angles a, b, and c is 180°. Hence, we have proved the triangle sum theorem.

Exterior Angle Sum Theorem

A very important consequence of the triangle sum theorem is the exterior angle theorem which states that "an exterior angle of a triangle is equal to the sum of its two interior opposite angles."

Triangle Sum Theorem - Formula, Proof, Statement, Examples | Angle Sum Theorem (3)

  • In the above triangle, a, b, and c are interior angles of the triangle ABC, and α is the exterior angle.
  • a + b + c = 180° (angle sum property) _______ (1)
  • Also, b + α = 180° (Linear Pair) _______ (2)
  • From (1) and (2): a + c = α

Polygon Angle Sum Theorem

The polygon exterior angle sum theorem states that "the sum of all exterior angles of a convex polygon is equal to 360°'. Let's consider the polygon given below.

Triangle Sum Theorem - Formula, Proof, Statement, Examples | Angle Sum Theorem (4)

In the above-given polygon, we can observe that in this 5-sided polygon, the sum of all exterior angles is 360° by polygon angle sum theorem. The number of interior angles is equal to the number of sides. The measure of an interior angle of a regular polygon can be calculated using the formula, Interior angle = 180º(n-2)/n, where n is the number of sides. Each exterior angle of a regular polygon is equal and the sum of the exterior angles of a polygon is 360°. An exterior angle can be calculated using the formula, Exterior Angle = 360º/n, where n is the number of sides.

Related Articles

  • Area of Polygons
  • Obtuse Triangles
  • Acute Triangle
  • Perimeter of a Triangle

Important Notes on Triangle Sum Theorem

Here is a list of a few important points on the angle sum theorem.

  • The sum of all interior angles of a triangle is equal to 180°.
  • Triangle sum theorem holds for all types of triangles.
  • The sum of all exterior angles of a triangle is equal to 360°.
  • The sum of all exterior angles of a convex polygon is equal to 360°.

FAQs on Triangle Sum Theorem

What Is the Triangle Sum Theorem in Geometry?

As per the triangle sum theorem, in any triangle, the sum of the three angles is 180°. There are different types of triangles in mathematics as per their sides and angles. All of these triangles have three angles and they all follow the triangle sum theorem.

What Is the Formula for Triangle Sum Theorem?

Consider a triangle ABC. In this given triangle ABC, ∠a + ∠b + ∠c = 180°. This is the formula for the angle sum theorem. The sum of the interior angles in a triangle is supplementary.

What Is the Angle Sum Formula for Polygons?

We have the formula to find the sum of interior angles of a polygon. For this, we need to multiply the number of triangles in the polygon by the angle of 180°. The formula that is used for finding the sum of interior angles is (n − 2) × 180°, where n is the number of sides.

What Is the Exterior Angle Sum Theorem?

The polygon exterior angle sum theorem states that the sum of all exterior angles of a convex polygon is equal to 360°.

What Does the Triangle Sum Theorem State?

The angle sum theorem states that the sum of all the interior angles of a triangle is 180 degrees.

How to Prove the Triangle Sum Theorem?

We can prove the triangle sum theorem by making a line passing through one of the vertices of the triangle and parallel to the opposite side. Then, we can use the parallel lines and transversal results, and the sum of angles of on a straight line property to prove the triangle sum theorem.

What Is the Angle Sum Theorem for Quadrilaterals?

Each of the quadrilaterals has four sides, four vertices, four interior angles, and two diagonals. The angle sum theorem of quadrilateral states that the sum of all interior angles is 360°. As per the angle sum theorem for quadrilaterals, the sum of all measures of the interior angles of the quadrilateral is 360°.

What Is Polygon Angle Sum Theorem?

Polygons are two-dimensional figures with more than 3 sides. As per the polygon angle sum theorem, the sum of the interior angle measures of a polygon depends on the number of sides it has. Also, by dividing a polygon with the number of sides it has, let it be n sides into (n – 2) triangles, it can be shown that the sum of the interior angle of any polygon is a multiple of 180°.

Triangle Sum Theorem - Formula, Proof, Statement, Examples | Angle Sum Theorem (2025)

FAQs

Triangle Sum Theorem - Formula, Proof, Statement, Examples | Angle Sum Theorem? ›

The sum of the interior angles in a triangle is supplementary. In other words, the sum of the measure of the interior angles of a triangle equals 180°. So, the formula of the triangle sum theorem can be written as, for a triangle ABC, we have ∠A + ∠B + ∠C = 180°.

What is the answer of triangle angle sum theorem? ›

Answer: The sum of the three angles of a triangle is always 180 degrees. To find the measure of the third angle, find the sum of the other two angles and subtract that sum from 180.

How do you prove the triangle theorem? ›

The isosceles triangle theorem can be proven by splitting an isosceles triangle in half, using a median will create two congruent triangles. Using the diagrams, one can determine the triangles to be congruent by any of the five triangle congruencies.

What is the formula of triangle proof? ›

The formula for that is 1/2*b*h, where b is base length and h is height. Hope this helped.

What is the triangle sum theorem 9th grade? ›

The angle sum property of a triangle says that the sum of its interior angles is equal to 180°. Whether a triangle is an acute, obtuse, or a right triangle, the sum of the angles will always be 180°. This can be represented as follows: In a triangle ABC, ∠A + ∠B + ∠C = 180°.

What is the sum of triangle formulas? ›

We know that the sum of angles in a triangle is 180 ∘ . For Δ A B C , the formula for the angle sum property of a triangle is ∠ A + ∠ B + ∠ C = 180 ∘ . What Is the angle sum theorem for any polygon?

What is the equation for the triangle theorem? ›

The Pythagoras theorem can be used to find the unknown side of a right-angled triangle if the other two sides are known. This theorem is mathematically expressed as, h2 = p2 + b2. Here, 'h' is the hypotenuse (longest side of a right triangle), 'p' is the perpendicular side, and 'b' is the Base.

What is the rule for the sum of triangles? ›

The sum of the interior angle measures of a triangle always adds up to 180°.

What are the 5 theorems of a triangle? ›

The triangle congruence theorems or triangle congruence criteria that facilitate to prove triangle congruence are listed below.
  • SSS (Side, Side, Side)
  • SAS (Side, Angle, Side)
  • ASA (Angle, Side, Angle)
  • AAS (Angle, Angle, Side)
  • RHS (Right Angle-Hypotenuse-Side)

What is the rule for the triangle theorem? ›

The triangle inequality theorem states that the sum of the lengths of any two sides of a triangle must be greater than the length of the remaining side.

Do all the angles in a triangle always add up to 300? ›

Angles. The measures of the interior angles of the triangle always add up to 180 degrees (same color to point out they are equal). The sum of the measures of the interior angles of a triangle in Euclidean space is always 180 degrees.

Can a triangle have a negative side? ›

side lengths of triangles cannot be negative, so we can disregard this inequality.

How to prove that the sum of a triangle is 180? ›

Mark the angles ∠ 1 , ∠ 2 , ∠ 3 , ∠ 4 and as shown in the figure.
  1. STEP 2 : Proving that sum of the angles of a triangle is.
  2. ∠ 2 = ∠ 4 (Alternate interior angles) ...
  3. ∠ 3 = ∠ 5 (Alternate interior angles) ...
  4. Adding equation and.
  5. We know that angles on a straight line add up to.
  6. ∴ ∠ 1 + ∠ 4 + ∠ 5 = 180 °
  7. ⇒ ∠ 1 + ∠ 2 + ∠ 3 = 180 °

What is the proof of triangle congruence theorem? ›

With these criteria, you can know for sure that two triangles are congruent. If all three pairs of corresponding sides are congruent, then the triangles are congruent. If two pairs of corresponding sides and the pair of included angles are congruent, then the triangles are congruent.

How do you prove the SSS theorem? ›

Theorem (Side-Side-Side or SSS): Let ABC and DEF be triangles with AB = DE, BC = EF, and CA = FD, then triangle ABC is congruent to triangle DEF. Proof: First, construct a congruent copy of triangle ABC that shares a side with DEF. Construct a point C' so that angle C'DE = angle CAB and also DC' = AC.

How do you prove the ASA theorem? ›

Under ASA criterion, Δ ABC ≅ ΔXYZ, as ∠B = ∠Y, ∠C = ∠Z, and the side BC = YZ. Since Δ ABC ≅ ΔXYZ, then the third angle ∠A and the other two sides of Δ ABC are bound to be equal to the corresponding angle ∠X and the sides of ΔXYZ.

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Mr. See Jast

Last Updated:

Views: 5335

Rating: 4.4 / 5 (55 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Mr. See Jast

Birthday: 1999-07-30

Address: 8409 Megan Mountain, New Mathew, MT 44997-8193

Phone: +5023589614038

Job: Chief Executive

Hobby: Leather crafting, Flag Football, Candle making, Flying, Poi, Gunsmithing, Swimming

Introduction: My name is Mr. See Jast, I am a open, jolly, gorgeous, courageous, inexpensive, friendly, homely person who loves writing and wants to share my knowledge and understanding with you.